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A system of equations for describing the evolution of the size range of gas bubbles as a result of their 

fractionation and coalescence in an isotropic turbulent decaying flow of incompressible liquid is derived and 

solved numerically. Outer parameters are found by which one can effectively control the probability 

distribution of the bubble radii. 

An equation for describing the evolution of gas bubbles in a turbulent liquid flow was derived and solved 

in [ 1 ]. Here, only the process of turbulent fractionation of bubbles was taken into account. The present study is 

aimed at the development of a model which could allow for both fractionation and coalescence of bubbles in a 

turbulent flow of incompressible liquid. The account for the coalescence process makes it possible to allow for the 
effect of gas saturation. 

1. Equation for ft(r) Describing the Process of Gas Bubble Coalescence in a Turbulent Flow. As a main 

object of investigation we take the probability density distribution of bubble radii ft(r). The function N(t), the 

quantity of bubbles per unit volume of a gas-liquid system, i.e., the concentration of bubbles, is necessary for the 

further presentation. This can be calculated by formula (8) from [l ]. 

We first write the equation for the function ft(r) for the case of coalescence only, in the absence of 

fractionation. The complete equation for ft(r) with allowance for both coalescence and fractionation can be then 
found by adding the fight side of the equation describing the process of turbulent fractionation to the fight side of 

the obtained equation. As a basis we use the Smolukhovskii-Miiller equation for the function ~o(v, t), which gives 

the distribution of coagulating particles over volumes v [2 ]: 

0~, (v, t) 1 v 
Ot = -2 f fl (v' vO ~~ (v - vl'  t) ~~ (vl' tl dvl - ~' (v' tl f fl (V' Vl) ~~ (vl' t) dvl " 

0 0 

(1) 

Herefl(vl,  v2) is the frequency of pair collisions of bubbles with volumes Vl and v2. The function ~o(v, t) is defined so 

that the integral with respect to the variable v of this function gives the total number of particles per unit volume of the 
gas-liquid system 

0O 

f (v, t) = N (t). (2) 
o 

Integrating (1) with respect to the volume, we obtain the equation for the concentration of bubbles N(t) 

Ot~ 

aN (t) = 1 f fl (vl, v2) ~o (vl, t) ~o (v2, t) dv I dv 2 �9 
dt 2 0  0 

(3) 

We determine the function ~ (v, t) by the formula 
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(v, t) = T (v, t) 
N (t) (4) 

We can see from (2) and (4) that this formula is normalized to unity. Using (4) we can write the equality 

O~ (v, t) _ 1 0</, (v, t) _ to (v, t) d N  (t) 

Ot . N (t) Ot N 2 (t) dt  
(5) 

Having replaced o~o(v, t) /Ot by the right side of equation (1) and replaced ~o(v, t) by g,(v, t) according to formula 
(4), we obtain the equation 

O--------T--- - N (t) f fl (v - v I , Vl) g' (v - Vl, t) ~p (v I , t) dv l - 

0 

} <,, o s , , > ,  - %;> uu_4Y_(0 
o dt 

To pass over to the variable r we use the obvious relations 

( 6 )  

dv 4 3 
g, (v, t) dv = It (r) dr ,  It (r) = ~O (v, t) --d-rr ' v = ~ Jrr . (7) 

Then the equation for f((r) - the probability density of bubble radii - will have the form [3 ] 

t 2 
Oft(r) - N ( t )  1 )  r 3 3 3 .1 /3 .  
- -  --3,2/3 fl [(r3 - r l ) '  r l l f t  I(r3 - rl) l • 

Ot 2 0 (r 3 - rl) 

ft (r) a N  (t) 
N (t) dt 

- } X ft (rl) drl - f t  (r) f f l  (r 3, r~ ) f  t (rl) dr 1 (8) 
0 

All forms of the Smolukhovskii-Miil ler equation involve the function fl(rai, r3), the meaning of which is 

the frequency of pair collisions of bubbles with volumes Vl and v2. The problem is to write an implicit form of this 

function for the case of coalescence of bubbles in a turbulent liquid flow. As was shown in [4 ], the coefficient of 
bubble diffusion in a turbulent liquid flow due to turbulence for bubbles of radius r > ( 1 0 - 7 - 1 0  -8) m is much 

higher than the coefficient of diffusion due to Brownian motion. Since the minimum bubble radius as a result of 
turbulent  fractionation at Reynolds  numbers Re - 1 0  4 (characteristic scale 10 -3 m, kinematic viscosity 10 -6  

m2/sec) is about  10 -5  m, then the contribution of Brownian motion to the coefficient of bubble diffusion can be 

neglected, and only turbulent diffusion is taken into accounI. 
An analogy between turbulent and Brownian diffusion [5 ] makes it possible to write an expression for the 

function fl(r~, ra2 ) in the following form: 

13 (r~, r32) = 4s~ [Dtu r (rl, t) + Dtu r (r2, t) l (r I + r2),  (9) 

where Dtur(r, t) is the differential coefficient of turbulent diffusion related to the energy distribution of turbulent 

fluctuations over different length scales. As was suggested in [6 ] on deriving a closed equation for Pt(r), this 

quantity can be related to Pt(r) by the formula 

Dtu r (r, t) = 6 ~ lPt ( 7 )  ~-]1/2 dT", (10) 
r 

which shows that Dtur(r, t) allows only for fluctuations with length scales exceeding the bubble radius. Fluctuations 
of smaller length scales result only in bubble deformation, but not in diffusion. The factor 6 in (10) allows for the 
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excess of the coefficient of turbulent diffusion of gas bubbles in the liquid over the coefficient of turbulent diffusion 

of liquid particles of the carrying flow that is caused by the difference in densities of the liquid and the gas in a 

bubble. As shown in [7 ], at a small bubble size the factor can reach the value 6 = 4.5. 

Thus,  Eqs. (9), (10) give the functionfl(r~, r 3) in terms of the distribution of turbulent energy over different 
length scales. 

2. Equation for ft(t) Evolution witP Allowance for Procerses  of Coalescence and Fractionation of Gas 

Bubbles.  In a gas-liquid turbulent  flow the processes of fractionation and coalescence of gas bubbles  occur 

simultaneously with one of them being predominant,  depending on the size of bubbles and various turbulent 

parameters.  Fractionation of bubbles takes place only when the intensity of turbulent fluctuations of velocity exceeds 

a certain threshold value, which is different for different bubble sizes, i.e., for a turbulent field of fixed strength 

there exists a certain critical bubble size such that bubbles with a radius greater than critical fractionate. An 

equation describing the process of bubble fractionation in a turbulent flow is derived in [ 1 ], and it is determined 
by formula (28). 

A complete equation with allowance for both coalescence and fractionation can be obtained by combining 

the right-hand sides of Eq. (8) of the present work and Eq. (28) from [1 ]. We write this resultant equation in 

dimensionless variables employing the notation from [ 1 1: 

r F 
Of t (r) = U (t) - rl) 

Ot r 3 3 " 2 / 3 f l  [ ( r 3  3 
- -  r l )  

• ft (rl) drl ft (r) ~f l  (r 3, 3 } - rl) It (rl) drl 
0 

ft (r) 0 [r (t)] + ~ ft (r) (r, R) dR 
-- Z. (r--- 3 - --acr  r ~ - "~  ~ �9 

3 3,1/3 
rl ]ft  1( r3 - rl) l x 

ft (r) dN (t) 
N (t) at 

(11) 

The function N(t) can be calculated from Eq. (8) of [1 ] using a value of gas saturation a chosen within the range 

(0-1). The quantity acr(t) is calculated by Eq. (15) of [1 ]. The derivation of the relation for T(R) was based in [1 ] 
on the employment of the criterion according to which the actual Weber number should be larger than some critical 

value [8, 91. The assumption that the velocity of the disturbance of a bubble surface is less than the sound velocity 
in the liquid c yields the following formula for r(R):  

(r) = 

?t(t) ] + 2Rk2 B(03/2 
kl 2 (2R, t) 

B (2R, 0 3/2 

(12) 

where 

2R 

2 ( 2 R ,  t) = f rP t (r) dr /B  (2R, r) , ~.(t) = rP, (r) dr /B  (t) ; 
0 0 

(13) 

2R .~ 
B ( 2 R ,  t ) =  f Pt(r) dr ,  B( t )  = Pt(r) dr; 

0 0 
(14 )  

2r0 / 2 
kl - L W e  (6/kr) t /2  (p,/p)l 

' B ( 0 )  1 / 2  
2roP B (0) k2 _ _ _  (15) 

, W e -  O ' C 

The function Pt(r) necessary for calculations is calculated from the closed equation 
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0 ~ - -  Or ~ee+ 2 7 f  [ F P t ( F ) l l / 2 d  ~r + P t ( r  ) , (16) 
0 

where ~, = 0.24; Re = LB(0) 1 / 2  is the Reynolds number,  where L is the initial scale of the velocity fluctuation field; 

v is the kinematic viscosity of liquid. The initial and boundary conditions for the function Pt(r) have the form 

P0( r )  = 2 r e x p ( - r  2); P t (0 )  = P t ( o o )  = 0 .  (17) 

The  expression for the function to(r, R), which specifies the mode of bubble fractionation, is written as formulas 

(30), (31), (33), (34) in [1 ]. The  initial condition for ft(r) can be represented in the form of the parabola 

3 (r - r0) 2 3 (18) 

fo (r) 4A 3 4A 

The  system of equations (10), (16) was solved by the impilicit finite-difference technique in combination 

with an iteration process for  nonlinearities. The  initial condition for ft(r) was assigned in the form of t18). The  

initial condition for Pt(r) was chosen in the form of (17). The  sweep method was used to solve the equation for 

Pt(r).  The  mesh of the space grid increased with r. The  convergence of the iterations at each time step was est imated 

by the quantities I (Ps - Ps+l ) / (Ps  + Ps+l) I < 10-5; I (Is - f s+t ) / ( I s  + Is+l) I < 10 -4,  where Ps and Is are the 

values of the functions Pt(r) and It(r) in iteration s. 

3. Results of the Numerical  Solution of the System of Equations for ft(r)  with Allowance for  Coalescence 

and Fractionation.  Before starting the discussion of the results of numerical calculation we shall make the following 

explanation. In the present s tudy an attempt is made to simulate, using the language of isotropic turbulence, the 

situation which is realized in a cavitation module for gas dispersion in a liquid with subsequent fTactionation of 

bubbles in a turbulent  liquid flow and their coalescence. In a real cavitation unit, the liquid flow passes through a 

plane with a sudden cross-section expansion, is mixed with air, and acquires a larger turbulent  energy. As the 

gas-liquid flow moves further,  turbulent  energy decreases due to dissipation, but since the flow moves in a channel  

there  simultaneously take place constant generation of turbulent energy near  the walls and its diffusion over the 

entire volume of the flow. As a result, the channel cross-section-mean turbulent energy is fixed at the level char- 

acteristic of the channel  flow. In the interior of the turbulent  liquid along the entire path of the cavitation unit there 

occur fractionation and coalescence of gas bubbles formed due to cavitation saturation in the plane where the flow 

suddenly expanded.  As a result, at the outlet from the cavitation unit there exists a gas-liquid flow with some size 

distribution of bubbles and a certain concentration of them that depends on the specific conditions in the turbulent 

flow. 

The  described pat tern is similated by the following calculation. At the instant t = 0, the initial distribution 

of turbulent  energy is specified in the liquid over a different length scale Po(r). Its parameters  (energy and mean 

length scale) are selected so that it reproduces the situation in the section of sudden flow expansion. Then  this 

distribution develops according to Eq. (16) until the energy attains the value characteristic of turbulence in the 

channel. Then ,  the function Pt(r) is considered stationary with a fixed energy level. Pt(r) was calculated without 

regard for the presence of bubbles in the liquid. Results of the calculation are given below in dimensionless form 

with the following characteristic dimensions: r e = 10 -3 m, Be(0) = 100 m2/sec 2, fc = 1 / ro  we = 1 / r  o Pc = Be(0)/rc,  

tc "~ rc/Bc(O) 1/2, Nc = 1 / 4  �9 The  distribution of probabilities of bubble radii ft(r) that is formed due to cavitation 

gas saturation is specified at the initial time instant. The  evolution of ft(r) is calculated in accordance with the above 

equation (11) on the basis of first decaying and then stationary turbulent  flow in the liquid. 

Figure 1 presents the evolution of the function of the probability distribution of bubble radii ft(r) at different 

values of the mean initial bubble radius. The  initial distribution is assigned according to Eq. (18) at r 0 -- 1 and r0 

= 2. It is seen from Fig. 1 that evolution of the function ft(r) under  the effect of the turbulent  velocity field is in 

a shift towards smaller sizes of bubbles. When t = 4 a reverse shift of the distribution to the right, toward larger 

sizes, starts. The  process of fractionation without regard for coalescence, as was shown in [1 ], terminated when 
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Fig. 1. Evolution of / t ( r )  for different initial bubble radii: 1) t = 0, 2) 0.3, 3) 

1.0, 4) 4.0, 5) 15.0. 

Fig. 2. Characteristic time of bubble fractionation as a function of radius: 1, 

5) t - - 0 ;  2, 6) 0.3, 3, 7) 1.0; 4, 8) 4.0. 
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Fig. 3. Evolution of ft(r) for different initial levels of turbulent energy: 1, 6) 
t = 0; 2, 7) 0.3; 3, 8) 1.0; 4, 9) 4.0; 5, I0) 15.0. 

t ~ 1.25. In the presence of coalescence this process is prolonged. Minimum mean sizes of bubbles are at tained at 

t = 2. As in the absence of coalescence, the dependence of the time required to establish a final distribution on 

the initial bubble size is weak. It is seen from Fig. 1 that when t _> 4 the dependence of the form of the function 

f i(r) on the initial bubble size r 0 vanishes completely. This is also confirmed by results of calculation of the mean 

radius and dispersion of the bubbles. This insensitivity to the initial bubble size is explained by the fact that the 

Characteristic time of fractionation ~(r) increases greatly with a decrease in the radius. It is seen from the plots 

for ~(r) in Fig. 2 that for bubbles of sizes smaller than r = 1, the time of fractionation increases substantially. Such 

a strong dependence of T(r) on the radius results in the fact that large bubbles fractionate more quickly and, 

finally, the functions f t(r) ,  being at  first different, become equal. 

The  noted peculiari ty of the dependence of the characteristic time of fractionation on size results in 

insensitivity of the final form of ft(r) to the initial form. This s tatement is illustrated by the results of calculation 

o f / t ( r )  at different values of A given in Fig. 5 of [1 ]. It is seen that by t = 0.3 any difference between initially 

different distributions ft(r) disappears. This insensitivity to the initial form of fo(r) is also confirmed by the results 

of calculation of bubble concentration N(t ) .  
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Fig. 4. Evolution of mean radius (a) and concentration (b) of bubbles at 

different levels of turbulent  energy: 1) B(0) 1/2 = 0.5; 2) 1.0; 3) 1.5; 4) 2.0. 

Thus,  the mean initial size of bubbles and the dispersion of the distribution turn out to be insignificant 

parameters  for controlling the size-distribution of bubbles at the outlet of the unit in which coalescence and 

fract ionat ion of bubbles occur. The  same conclusion was made  in [1 ], where only the process of turbulent  

fractionation was taken into account. 

A much more effective means of controlling the probability distribution of bubble sizes is variation of the 

turbulence parameters.  Figure 3 shows the evolution of the function ft(r) calculated at different initial levels of 

turbulent  energy with a constant scale of the length of the turbulent velocity field. It is seen from the figure that 

at larger values of turbulent  energy the process of bubble fractionation is more intense. This is in correspondence 

with the dependence of the characteristic time of fractionation on the turbulence intensity (Fig. 2). In contrast  to 

the case of the absence of coalescence [1 J a reverse motion of f t(r) toward larger bubble sizes caused by bubble 

coalescence is observed (see curves 9, 10, and 4, 5 in Fig. 3). 

Figure 4 presents the time variation of the mean bubble radius for different levels of initial turbulent  energy. 

It is seen that the increase in the mean bubble radius starts earlier in the case of larger values of initial turbulent  

energy. The growth of r(t) under  the effect of coalescence does not lead to a noticeable convergence of curves 

corresponding to different values of B(0) even at larger times, i.e., the achieved difference in the distribution at 

the beginning of the fractionation process appears to be stable. At B(0)1/2 = 2 the mean bubble radius turns to be 

smaller by a factor of 2.5 than at B(0) 1/2 = 0.5 (see Fig. 4a). 

Figure 4b shows the evolution of the concentration as a function of different initial levels of turbulent  energy 

with a constant initial scale L. It is seen that the higher the initial level of turbulence, the higher the bubble 

concentration. This is caused by the enhancement  of the process of turbulent fractionation of bubbles in a flow with 

higher turbulent  energy. The  maximum of N(t)  at small times is explained by the predominance of the fractionation 

process at the beginning. When turbulence becomes weaker the concentration of bubbles starts to decrease due to 

coalescence. As is seen from Fig. 4b with a twofold increase in the initial value of the mean-square fluctuations the 

final bubble concentrat ion increases by a factor of 3.5. It follows from the presented results that variation of the 

energy of a turbulent  flow is an effective means for controlling the size distribution and concentration of bubbles. 

A change in the characteristics of the bubble distribution can also be achieved by variation of the initial 

length scale L. The  time variation of the characteristics of the turbulent velocity field in the background of which 

the evolution of the probabil i ty distr ibution of bubble radii occurs is in the following. The  evolution of the 

distribution of turbulent  energy over the length scale Pt(r) at different initial scales L is realized in a similar way. 

First, fractionation of turbulent  eddies results in a shift of the distribution Pt(r) to the region of smaller length 

scales. On the termination of the nonequilibrium period, decay of the spectrum is observed with a slight shift of 

the spectrum maximum to the right. Attenuation of the intensity of turbulent fluctuations from the maximum to a 

stable value is noticeably slowed with an increase in the initial value of the length scale. The dissipation rate at 

the maximum for small L substantially exceeds that for large L. 

T h e  m e n t i o n e d  tu rbu l en t  charac ter i s t ics  with a change  in the initial length  scale d e t e r m i n e  the  

corresponding variation of parameters directly affecting evolution of the probability distribution of gas bubble radii. 
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Fig. 5. Evolution of bubble critical radius at different initial scales of the 

length of the turbulent  velocity field: l) L = 0.5; 2) 1.0; 3) 1.5; 4) 2.0. 

Fig. 6. Evolution of ft(r) for different  initial scales of the length of the 

turbulent  velocity field: l) t = 0; 2, 6) 0.3; 3, 7) 1.0; 4, 8) 4.0; 5, 9) 15.0. 
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Fig. 7. Evolution of mean radius (a) and concentration (b) of bubbles for 
different initial scales of the length of the turbulent velocity field: 1) L = 0.5; 

2) 1.0; 3) 1.5; 4) 2.0. 

Figure 5 shows the dependence of the evolution of bubble critical radius on L. It is seen that in a small-scale 

turbulent  velocity field the critical values of bubble radii are much smaller than in a turbulent field with a greater  

value of L. The  intensi ty of fractionation, which is determined by T(r), greatly depends on the length scale L. 

A comparison of the evolution of the function of the probability d is t r ibut ion/ t ( r )  for L = 0.5 and L = 2 

shows that the final size distributions of bubbles (curves 5 and 9 in Fig. 6) remain substantially different. The  

mean radii of the bubbles (Fig. 7a) differ by about twofold and the maximum radii by about 2.2 times for L = 0.5 

and L = 2. The dependence  of the mean radius on time has two characteristic regions (Fig. 7a). The  first describes 

fast reduction in bubble sizes and is associated with fractionation in an intense turbulent field of liquid velocity, 

and the second shows a gradual increase in bubble sizes due to coalescence. In the absence of coalescence [1 ] the 

second region is represented by a straight line. Dispersion of bubble sizes in the region of fractionation decreases, 

whereas in the region of coalescence it slowly grows. Figure 7b presents the change of concentration with time at 

different values of the initial scale of turbulence length. It is seen from the plots that the mean concentrat ion of 

bubbles N(t) can be controlled within a wide range by varying L. The final values of N(t) for the cases of L = 0.5 

and L = 2 differ by 10 times. 

It follows from the effect of the initial length scale of the turbulent velocity field on the characteristics of 

a gas-liquid system that the variation of L is an effective means for controlling the probability distribution of bubble 
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Fig. 8. Evolution of ft(r) at different values of gas content in liquid: 1) t = 0; 
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Fig. 9. Evolution of bubble concentration at different values of gas content in 

liquid: 1) a = 10-2; 2) 2.10-2; 3) 4-10-2; 4) 8.10 -2. 

sizes. The dependences of the steady-state values of the mean radius r and concentration N on the length scale L 

confirm the above statement. 

One more means for controlling the characteristics of the probability distribution of bubble sizes is variation 

of the gas content of the flow. Figure 8 presents the evolution of the probability density of bubble radi i / t ( r )  

calculated at two values of volume gas concentration a. The mean and maximum radii of bubbles are much smaller 

at a smaller gas content. The values of distribution dispersion at different a differ greatly. Large dispersions 

correspond to larger gas contents, which is seen from the evolution curves of ft(r) at different values of a. As is 

seen from Fig. 8, this dependence of ft(r) on gas content is associated with the fact that in the case of a larger gas 

content the process of coalescence, which competes with the process of bubble fractionation, begins at early stages 

of gas system evolution. Therefore, bubble sizes at the steady state are much larger. Blurring of the distribution 

is caused, as in other cases, by large bubble sizes. 

Figure 9 presents the dependence of the concentration of bubbles in gas saturation, It is seen that the 

difference in concentration acquired at the fractionation stage remains at the steady-state stage of the evaluation 

of a gas-liquid system. 

Thus, the size distribution and concentration of bubbles can be controlled by gas content .  

C O N C L U S I O N S  

A system of equations describing coalescence and fractionation of bubbles in a turbulent flow of 

incompress ib le  fluid is obtained and studied numerically. The function of probability density distribution of bubble 

radii ft(r), changing with time, is calculated by an equation in which variable quantities such as the frequency of 

pair collisions of bubbles, critical radius, and characteristic time of bubble fractionation are found by the function 

of turbulent energy distribution over the length scales. 

The obtained system of equations was calculated for different initial distributions of bubble radii, the initial 

intensity and characteristic scale of the turbulent velocity field, and the gas content. 

The following regularities were found as a result of calculations: 

1) The evolution of the function ft(r) under the effect of a turbulent velocity field is reduced first to a shift 

to small bubble radii, which is caused by intense fractionation of bubbles in the turbulent liquid flow, and then to 

a slow shift toward larger bubble radii under the effect of coalescence. 

2) The final stationary function f t(r)  and the time of its establishment weakly depend on the mean bubble 

size in the initial distribution and are practically not determined by the dispersion of the initial distribution. 
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3) As the initial energy of the turbulent velocity field increases, the mean bubble radius and dispersion of 
radii decrease and the concentration of bubbles increases. 

4) As the initial length scale of the turbulent velocity field increases, the mean bubble radius and the 

dispersion of the function ft(r) increase, and the concentration of bubbles decreases. 

5) As volume gas content in the flow increases, the final values of the mean bubble radius, dispersion of 

the distribution of ft(r), and concentration of bubbles per unit volume increase. 

Thus, the distribution of probabilities of radii and concentration of bub01es in a turbulent gas-liquid flow 
can be effectively controlled by varying the initial energy, the initial scale of the length of turbulent fluctuations 

of liquid, and the volume gas content. 

The work was carried out with financial support from the Fundamental Research Fund of the Republic of 
Belarus. 

N O T A T I O N  

.ft(r), probability density of bubble radius size; Pt(r), turbulent energy distribution over different length 

scales; act, critical bubble radius; Re, Reynolds number of turbulent flow; We, Weber number; w(r, R), functions 

describing mode of fractionation of bubbles of radius R to bubbles of radius r; a, surface tension coefficient; r(r), 

characteristic time of bubble fractionation; L, initial macroscale of velocity fluctuation field; B(0) initial energy of 

turbulent flow; T(t), time-varying mean radius of bubbles; A, half-width of initial distribution of [0(r); p', gas 

density; p, liquid density. Subscripts: t, time; c, characteristic value. 
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